Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cell Rep ; 42(2): 112076, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2209950

ABSTRACT

During translation of the genomic RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus in the COVID-19 pandemic, host ribosomes undergo programmed ribosomal frameshifting (PRF) at a conserved structural element. Although PRF is essential for coronavirus replication, host factors that regulate this process have not yet been identified. Here we perform genome-wide CRISPR-Cas9 knockout screens to identify regulators of SARS-CoV-2 PRF. These screens reveal that loss of ribosome recycling factors markedly decreases frameshifting efficiency and impairs SARS-CoV-2 viral replication. Mutational studies support a model wherein efficient removal of ribosomal subunits at the ORF1a stop codon is required for frameshifting of trailing ribosomes. This dependency upon ribosome recycling is not observed with other non-pathogenic human betacoronaviruses and is likely due to the unique position of the ORF1a stop codon in the SARS clade of coronaviruses. These findings therefore uncover host factors that support efficient SARS-CoV-2 translation and replication.

2.
Heliyon ; 9(1): e12744, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165334

ABSTRACT

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

3.
Front Chem ; 10: 963701, 2022.
Article in English | MEDLINE | ID: covidwho-2080113

ABSTRACT

Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, is the biggest challenge to the global public health and economy in recent years. Until now, only limited therapeutic regimens have been available for COVID-19 patients, sparking unprecedented efforts to study coronavirus biology. The genome of SARS-CoV-2 encodes 16 non-structural, four structural, and nine accessory proteins, which mediate the viral life cycle, including viral entry, RNA replication and transcription, virion assembly and release. These processes depend on the interactions between viral polypeptides and host proteins, both of which could be potential therapeutic targets for COVID-19. Here, we will discuss the potential medicinal value of essential proteins of SARS-CoV-2 and key host factors. We summarize the most updated therapeutic interventions for COVID-19 patients, including those approved clinically or in clinical trials.

4.
Viruses ; 14(10)2022 10 08.
Article in English | MEDLINE | ID: covidwho-2066562

ABSTRACT

Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary
5.
Infect Genet Evol ; 104: 105357, 2022 10.
Article in English | MEDLINE | ID: covidwho-2004347

ABSTRACT

BACKGROUND: The ACE2 protein acts as a gateway for SARS-CoV-2 in the host cell, playing an essential role in susceptibility to infection by this virus. Genetics and epigenetic mechanisms related to the ACE2 gene are associated with changes in its expression and, therefore, linked to increased susceptibility to infection. Although some variables such as sex, age, and obesity have been described as risk factors for COVID-19, the molecular causes involved in the disease susceptibility are still unknown. AIM: To evaluate the ACE2 gene expression profiles and their association with epigenetic mechanisms and demographic or clinical variables. METHODS: In 500 adult volunteers, the mRNA expression levels of the ACE2 gene in nasopharyngeal swab samples and its methylation status in peripheral blood samples were quantified by RT-qPCR and qMSP, respectively. The existence of significant differences in the ACE2 gene expression and its determinants were evaluated in different study groups according to several demographic or clinical variables such as sex, age, body mass index (BMI), smoking, SARS-CoV-2 infection, and presence of underlying diseases such as type II diabetes mellitus (DM2), asthma and arterial hypertension (AHT). RESULTS: Our results show that ACE2 gene overexpression, directly involved in susceptibility to SARS-CoV-2 infection, depends on multiple host factors such as male sex, age over 30 years, smoking, the presence of obesity, and DM2. Likewise, it was determined that the ACE2 gene expression is regulated by changes in the DNA methylation patterns in its promoter region. CONCLUSIONS: The ACE2 gene expression is highly variable, and this variability is related to habits such as smoking and demographic or clinical variables, which details the impact of environmental and host factors on our epigenome and, therefore, in susceptibility to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Diabetes Mellitus, Type 2 , Adult , COVID-19/genetics , Epigenesis, Genetic , Gene Expression , Humans , Male , Obesity/genetics , RNA, Messenger/genetics , SARS-CoV-2
6.
Biomedicines ; 10(7)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1911182

ABSTRACT

The continuous variability of SARS-CoV-2 and the rapid waning of specific antibodies threatens the efficacy of COVID-19 vaccines. We aimed to evaluate antibody kinetics one year after SARS-CoV-2 vaccination with an mRNA vaccine in healthcare workers (HCW), with or without a booster. A marked decline in anti-Spike(S)/Receptor Binding Domain (RBD) antibody levels was registered during the first eight months post-vaccination, followed by a transitory increase after the booster. At three months post-booster an increased antibody level was maintained only in HCW vaccinated after a prior infection, who also developed a higher and long-lasting level of anti-S IgA antibodies. Still, IgG anti-nucleocapsid (NCP) fades five months post-SARS-CoV-2 infection. Despite the decline in antibodies one-year post-vaccination, 68.2% of HCW preserved the neutralization capacity against the ancestral variant, with a decrease of only 17.08% in the neutralizing capacity against the Omicron variant. Nevertheless, breakthrough infections were present in 6.65% of all participants, without any correlation with the previous level of anti-S/RBD IgG. Protection against the ancestral and Omicron variants is maintained at least three months after a booster in HCW, possibly reflecting a continuous antigenic stimulation in the professional setting.

7.
BMC Nephrol ; 23(1): 117, 2022 03 24.
Article in English | MEDLINE | ID: covidwho-1770497

ABSTRACT

BACKGROUND: Host factors such as angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, serine-subtype-2 (TMPRSS2) are important factors for SARS-CoV-2 infection. Clinical and pre-clinical studies demonstrated that RAAS-blocking agents can be safely used during a SARS-CoV-2 infection but it is unknown if DPP-4 inhibitors or SGLT2-blockers may promote COVID-19 by increasing the host viral entry enzymes ACE2 and TMPRSS2. METHODS: We investigated telmisartan, linagliptin and empagliflozin induced effects on renal and cardiac expression of ACE2, TMPRSS2 and key enzymes involved in RAAS (REN, AGTR2, AGT) under high-salt conditions in a non-diabetic experimental 5/6 nephrectomy (5/6 Nx) model. In the present study, the gene expression of Ace2, Tmprss2, Ren, Agtr2 and Agt was assessed with qRT-PCR and the protein expression of ACE2 and TMPRSS2 with immunohistochemistry in the following experimental groups: Sham + normal diet (ND) + placebo (PBO); 5/6Nx + ND + PBO; 5/6Nx + high salt-diet (HSD) + PBO; 5/6Nx + HSD + telmisartan; 5/6Nx + HSD + linagliptin; 5/6Nx + HSD + empagliflozin. RESULTS: In the kidney, the expression of Ace2 was not altered on mRNA level under disease and treatment conditions. The renal TMPRSS2 levels (mRNA and protein) were not affected, whereas the cardiac level was significantly increased in 5/6Nx rats. Intriguingly, the elevated TMPRSS2 protein expression in the heart was significantly normalized after treatment with telmisartan, linagliptin and empagliflozin. CONCLUSIONS: Our study indicated that there is no upregulation regarding host factors potentially promoting SARS-CoV-2 virus entry into host cells when the SGLT2-blocker empagliflozin, telmisartan and the DPP4-inhibitor blocker linagliptin are used. The results obtained in a preclinical, experimental non-diabetic kidney failure model need confirmation in ongoing interventional clinical trials.


Subject(s)
COVID-19 Drug Treatment , Dipeptidyl-Peptidase IV Inhibitors , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Animals , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Kidney/metabolism , Nephrectomy , Rats , SARS-CoV-2 , Sodium-Glucose Transporter 2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
8.
Mol Ther Nucleic Acids ; 28: 249-258, 2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1740077

ABSTRACT

In the past year, the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in the worldwide coronavirus disease 2019 (COVID-19) pandemic. Yet our understanding of the SARS-CoV-2 tropism mechanism is still insufficient. In this study, we examined the chromatin accessibility at the promoters of host factor genes (ACE2, TMPRSS2, NRP1, BSG, CTSL, and FURIN) in 14 tissue types, 23 tumor types, and 189 cell lines. We showed that the promoters of ACE2 and TMPRSS2 were accessible in a tissue- and cell-specific pattern, which is accordant with previous clinical research on SARS-CoV-2 tropism. We were able to further verify that type I interferon (IFN) could induce angiotensin-converting enzyme 2 (ACE2) expression in Caco-2 cells by enhancing the binding of HNF1A, the transcription factor of ACE2, to ACE2 promoter without changing chromatin accessibility. We then performed transcription factor (TF)-gene interactions network and pathway analyses and discovered that the TFs regulating host factor genes are enriched in pathways associated with viral infection. Finally, we established a novel model that suggests that open chromatin at the promoter mediates the host factors' supplementary effect and ensures SARS-CoV-2 entry. Our work uncovers the relationship between epigenetic regulation and SARS-CoV-2 tropism and provides clues for further investigation of COVID-19 pathogenesis.

9.
J Mol Biol ; 434(5): 167403, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1611867

ABSTRACT

COVID-19 caused by SARS-CoV-2 is the latest pandemic which has thrown the world into an unprecedented social and economic uncertainties along with huge loss to humanity. Identification of the host factors regulating the replication of SARS-CoV-2 in human host may help in the development of novel anti-viral therapies to combat the viral infection and spread. Recently, some research groups used genome-wide CRISPR/Cas screening to identify the host factors critical for the SARS-CoV-2 replication and infection. A comparative analysis of these significant host factors (p < 0.05) identified fifteen proteins common in these studies. Apart from ACE2 (receptor for SARS-CoV-2 attachment), other common host factors were CSNK2B, GDI2, SLC35B2, DDX51, VPS26A, ARPP-19, C1QTNF7, ALG6, LIMA1, COG3, COG8, BCOR, LRRN2 and TLR9. Additionally, viral interactome of these host factors revealed that many of them were associated with several SARS-CoV-2 proteins as well. Interestingly, some of these host factors have already been shown to be critical for the pathogenesis of other viruses suggesting their crucial role in virus-host interactions. Here, we review the functions of these host factors and their role in other diseases with special emphasis on viral diseases.


Subject(s)
COVID-19/virology , Host Microbial Interactions , Host-Derived Cellular Factors/metabolism , Pandemics , SARS-CoV-2/physiology , COVID-19/epidemiology , Clustered Regularly Interspaced Short Palindromic Repeats , Host-Derived Cellular Factors/genetics , Humans , SARS-CoV-2/genetics
10.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1550535

ABSTRACT

To better understand the potential of drug repurposing in COVID-19, we analyzed control strategies over essential host factors for SARS-CoV-2 infection. We constructed comprehensive directed protein-protein interaction (PPI) networks integrating the top-ranked host factors, the drug target proteins and directed PPI data. We analyzed the networks to identify drug targets and combinations thereof that offer efficient control over the host factors. We validated our findings against clinical studies data and bioinformatics studies. Our method offers a new insight into the molecular details of the disease and into potentially new therapy targets for it. Our approach for drug repurposing is significant beyond COVID-19 and may be applied also to other diseases.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Computational Biology , Drug Repositioning , Protein Interaction Maps , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , COVID-19/genetics , COVID-19/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
11.
J Med Virol ; 94(4): 1330-1335, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1540139

ABSTRACT

The efficacy of the vaccines varies between individuals and populations. The immunogenicity of the vaccine is influenced by various factors, including host factors. Previous studies have shown that host factors affect the effectiveness of vaccines, which may be true about COVID-19 vaccines. In this review, we evaluate the possible association of host factors with vaccine efficacy with a special focus on COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines/immunology , Vaccine Efficacy , Age Factors , Body Mass Index , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Gastrointestinal Microbiome , Humans , Immunity , Immunogenicity, Vaccine , Nutritional Status/immunology , Obesity/immunology , Polymorphism, Genetic , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sex Factors
12.
Cureus ; 13(11): e19393, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1538794

ABSTRACT

Background Little is known about the opinion of professional academic immunologists regarding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Methodology In this study, we designed an online survey to determine the opinion of immunologically competent academics on SARS-CoV-2 compared with seasonal flu (the infection fatality rate, infectivity, the challenge to the health system, the importance of vaccine development, and the importance of the virulence of the virus and host factors), in addition to collecting demographic status variables and information sources used. Links to the survey were sent to all German-speaking immunologists, bacteriologists, virologists, and infectiologists in Germany, Austria, and Switzerland. Results A total of 91 full datasets were returned after three waves of requests. Approximately half of the respondents were male and half were more junior. Slightly more than half of the respondents said that the infection fatality rate and the infectivity were higher compared to flu, and 82% said that the challenge to the health system is higher. Overall, 52% found that the immune system is more important than the virus, and a majority (59%) supported the current practice of vaccination development by telescoping. A majority were of the view that conspiracy theories and non-pharmacological interventions pose a greater danger than the virus. Respondents who were more junior but well-published and mostly informed by public channels were more likely to support a mainstream view. Conclusions German-speaking immunological professionals hold widely diverging opinions regarding SARS-CoV-2. Over half of the surveyed professionals considered SARS-CoV-2 to be more dangerous and infective than the seasonal flu. However, the majority considered the health system to be under higher strain. Interestingly, more than half of them found host factors more important.

13.
Viruses ; 13(11)2021 11 15.
Article in English | MEDLINE | ID: covidwho-1524171

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a main receptor for SARS-CoV-2 entry to the host cell. Indeed, the first step in viral entry is the binding of the viral trimeric spike (S) protein to ACE2. Abundantly present in human epithelial cells of many organs, ACE2 is also expressed in the human brain. ACE2 is a type I membrane protein with an extracellular N-terminal peptidase domain and a C-terminal collectrin-like domain that ends with a single transmembrane helix and an intracellular 44-residue segment. This C-terminal segment contains a PDZ-binding motif (PBM) targeting protein-interacting domains called PSD-95/Dlg/ZO-1 (PDZ). Here, we identified the human PDZ specificity profile of the ACE2 PBM using the high-throughput holdup assay and measuring the binding intensities of the PBM of ACE2 against the full human PDZome. We discovered 14 human PDZ binders of ACE2 showing significant binding with dissociation constants' values ranging from 3 to 81 µM. NHERF, SHANK, and SNX27 proteins found in this study are involved in protein trafficking. The PDZ/PBM interactions with ACE2 could play a role in ACE2 internalization and recycling that could be of benefit for the virus entry. Interestingly, most of the ACE2 partners we identified are expressed in neuronal cells, such as SHANK and MAST families, and modifications of the interactions between ACE2 and these neuronal proteins may be involved in the neurological symptoms of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , PDZ Domains , Proteins/chemistry , Proteins/metabolism , Receptors, Coronavirus/metabolism , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Sorting Nexins/chemistry , Sorting Nexins/metabolism
14.
Viruses ; 13(11)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1488755

ABSTRACT

Understanding the dynamic relationship between viral pathogens and cellular host factors is critical to furthering our knowledge of viral replication, disease mechanisms and development of anti-viral therapeutics. CRISPR genome editing technology has enhanced this understanding, by allowing identification of pro-viral and anti-viral cellular host factors for a wide range of viruses, most recently the cause of the COVID-19 pandemic, SARS-CoV-2. This review will discuss how CRISPR knockout and CRISPR activation genome-wide screening methods are a robust tool to investigate the viral life cycle and how other class 2 CRISPR systems are being repurposed for diagnostics.


Subject(s)
CRISPR-Cas Systems , Communicable Diseases, Emerging/virology , Coronavirus Infections/virology , Coronavirus/genetics , Gene Editing , Zika Virus Infection/virology , Zika Virus/genetics , COVID-19/diagnosis , COVID-19/virology , Clustered Regularly Interspaced Short Palindromic Repeats , Communicable Diseases, Emerging/diagnosis , Coronavirus/physiology , Coronavirus Infections/diagnosis , Host-Pathogen Interactions , Humans , SARS-CoV-2/genetics , Zika Virus/physiology , Zika Virus Infection/diagnosis
15.
Bioorg Med Chem ; 46: 116356, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1347508

ABSTRACT

The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.


Subject(s)
Antiviral Agents/pharmacology , Positive-Strand RNA Viruses/drug effects , Animals , Cytokines/metabolism , Frameshifting, Ribosomal/drug effects , Frameshifting, Ribosomal/physiology , Glycosylation/drug effects , Humans , Immunity/drug effects , Immunity/physiology , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/physiology , Polyamines/metabolism , Positive-Strand RNA Viruses/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Ubiquitination/drug effects , Ubiquitination/physiology
16.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: covidwho-1006614

ABSTRACT

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins' functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Subject(s)
Protein Processing, Post-Translational , RNA Virus Infections/enzymology , RNA Virus Infections/virology , RNA Viruses/metabolism , RNA Viruses/pathogenicity , Viral Proteins/metabolism , Acetylation , Chikungunya virus/metabolism , Coronavirus/metabolism , Coronavirus/pathogenicity , Cytopathogenic Effect, Viral , Glycosylation , HIV/metabolism , HIV/pathogenicity , Host Microbial Interactions , Humans , Phosphorylation , RNA Virus Infections/immunology , RNA Virus Infections/metabolism , RNA Viruses/immunology , Ubiquitination , Virus Replication/physiology , Zika Virus/metabolism , Zika Virus/pathogenicity
17.
Methods Mol Biol ; 2203: 205-221, 2020.
Article in English | MEDLINE | ID: covidwho-729908

ABSTRACT

We have developed a screening system using the yeast Saccharomyces cerevisiae to identify eukaryotic genes involved in the replication of mammalian viruses. Yeast come with various advantages, but in the context of coronavirus research and the system outlined here, they are simple and easy to work with and can be used at biosafety level 2. The system involves inducible expression of individual viral proteins and identification of detrimental phenotypes in the yeast. Yeast knockout and overexpression libraries can then be used for genome-wide screening of host proteins that provide a suppressor phenotype. From the yeast hits, a narrowed list of candidate genes can be produced to investigate for roles in viral replication. Since the system only requires expression of viral proteins, it can be used for any current or emerging virus, regardless of biocontainment requirements and ability to culture the virus. In this chapter, we will outline the protocols that can be used to take advantage of S. cerevisiae as a tool to advance understanding of how viruses interact with eukaryotic cells.


Subject(s)
Coronavirus/physiology , Coronavirus/pathogenicity , Host-Pathogen Interactions/physiology , Saccharomyces cerevisiae/genetics , Plasmids , Viral Proteins/genetics , Viral Proteins/isolation & purification , Virus Replication
18.
Precis Clin Med ; 3(3): 228-234, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1109318

ABSTRACT

If the current rate of infection are to be better managed, and future waves of infection kept at bay, it is absolutely necessary that the conditions and mechanisms of exposure to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) be better understood, as well as the downstream severe or lethal clinical complications. While the identification of notable comorbidities has now helped to define broad risk groups, the idiosyncratic responses of individual patients can generate unexpected clinical deterioration that is difficult to predict from initial clinical features. Thus, physicians caring for patients with COVID-19 face clinical dilemmas on a daily basis. The ability to decipher individual predispositions to SARS-CoV-2 infection or severe illness, in light of variations in host immunological and inflammatory responses, in particular as a result of genetic variations, would be of great benefit in infection management. To this end, this work associates the description of COVID-19 clinical complications, comorbidities, sequelae, and environmental and genetic factors. We also give examples of underlying genomic susceptibility to COVID-19, especially with regard to the newly reported link between the disease and the unbalanced formation of neutrophil extracellular traps. As a consequence, we propose that the host/genetic factors associated with COVID-19 call for precision medicine in its treatment. This is to our knowledge the first article describing elements towards precision medicine for patients with COVID-19.

19.
Cell ; 184(1): 120-132.e14, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064914

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.


Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , SARS-CoV-2/physiology , A549 Cells , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus 229E, Human/physiology , Coronavirus Infections/virology , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/physiology , Gene Knockout Techniques , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Membrane Proteins/metabolism , Metabolic Networks and Pathways/drug effects , Protein Interaction Mapping
20.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064913

ABSTRACT

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Subject(s)
COVID-19/genetics , Coronavirus Infections/genetics , Coronavirus/physiology , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , A549 Cells , Animals , Biosynthetic Pathways/drug effects , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cholesterol/biosynthesis , Cholesterol/metabolism , Cluster Analysis , Clustered Regularly Interspaced Short Palindromic Repeats , Common Cold/genetics , Common Cold/virology , Coronavirus/classification , Coronavirus Infections/virology , Gene Knockout Techniques , Host-Pathogen Interactions/drug effects , Humans , Mice , Phosphatidylinositols/biosynthesis , Vero Cells , Virus Internalization/drug effects , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL